2 research outputs found

    Risk Communication and Climate Justice Planning: A Case of Michigan's Huron River Watershed

    Get PDF
    Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both social and ecological vulnerability in Michigan’s Huron River watershed, USA, a quasi-experiment was conducted to examine the effects of Climate Justice mapping intervention on residents’ perceptions and preparedness for climate change associated hazards in Michigan. Two groups were compared: residents in Climate Justice areas with high social and ecological vulnerability scores in the watershed (n=76) and residents in comparison areas in Michigan (n=69). Measurements for risk perception include perceived exposure, sensitivity, and adaptability to hazards. Results indicate that risk information has a significant effect on perceived sensitivity and level of preparedness for future climate extremes among participants living in Climate Justice areas. Findings highlight the value of integrating scientific risk assessment information in risk communication to align calculated and perceived risks. This study suggests effective risk communication can influence local support of climate action plans and implementation of strategies that address climate justice and achieve social sustainability in local communities

    Boundary organizations to boundary chains: Prospects for advancing climate science application

    No full text
    Adapting to climate change requires the production and use of climate information to inform adaptation decisions. By facilitating sustained interaction between science producers, boundary organizations narrow the gap between science and decision-making and foster the co-production of actionable knowledge. While traditional boundary organization approaches focused on intense one-on-one interactions between producers and users increases usability, this approach requires significant time and resources. Forming “boundary chains”, linking complimentary boundary organizations together, may reduce those costs. In this paper, we use longitudinal observations of a boundary chain, interviews and surveys to explore: (1) how producer-user interactions increase understanding and information usability and (2) if and how efficiencies in climate information production, dissemination and use arise as a result of the boundary chain. We find that forming and sustaining an effective boundary chain requires not only interest, commitment and investment from every link in the chain but also a level of non-overlapping mutual dependency and complementary skill sets. In this case, GLISA’s strength in producing scientific information and their credibility as climate scientists and HRWC’s strengths in facilitation, connection with potential information users, and their recognition and reputation in the watershed add value to the boundary chain enabling the boundary chain to accomplish more with greater efficiency than if each organization in the chain tried to work independently. Finally, data show how the boundary chain increased efficiencies in educating potential users about the strengths and limitations of climate science and improving the production, dissemination, and use of climate information
    corecore